If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=18x+59
We move all terms to the left:
x^2-(18x+59)=0
We get rid of parentheses
x^2-18x-59=0
a = 1; b = -18; c = -59;
Δ = b2-4ac
Δ = -182-4·1·(-59)
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{35}}{2*1}=\frac{18-4\sqrt{35}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{35}}{2*1}=\frac{18+4\sqrt{35}}{2} $
| 9=30/x | | 47=19-9x | | 9n+8=26 | | 5x2−5=0 | | 5t-10=0 | | -5+9x=-2 | | x+5=92 | | 4m-10=-6 | | s-26=45 | | 1/6x+5=19 | | 9-5x+2=4+-5x | | 15^2+x=26^2 | | 0.8a+(-5)=0 | | 1.5s-(-4)=8 | | 2.17+x=55 | | -71+s=64000 | | n+.3=2.9 | | 4^(2x-1)=18 | | 3y+1-2y-1=5y | | s+27=600 | | -57+s=385 | | |3x+6|=78 | | x+3=3-6x | | -0.5g+2=6 | | 3x+x/2+15=99 | | 20=5x2+18/6 | | 90+x^2+3x+20=180 | | 4/5x-16=48 | | 7-3x=1x3 | | (y-6)^2=100 | | 18÷3x=6 | | 15x-23=180 |